

Linux Administration

Firewalls

Xavier Belanger

This work is licensed under
a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

● Share — copy and redistribute the material in any medium or format

● Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

● Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use.

● ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

● No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Why using a firewall?
● The network where your system is hosted

may be considered as “hostile”.
● Some applications may not provide an easy

way to restrict accesses.
● This would provide an additional layer of

protection.
● You may need to use firewall rules to modify

the network traffic.

The Netfilter project
● Network filtering and related

applications for the Linux system are
under the umbrella of the Netfilter
project.

● The main tools available to manage
firewalls are iptables and nftables.

● https://netfilter.org/

iptables
● iptables is currently the most common filtering tool

used on Linux systems.
● It relies on various network tables; each table

contains chains, with a default policy (accept or
drop).

● Filtering rules can be added or removed in each
chain.

● ‘Filter’ is the default table, with three chains: input,
forward and output.

iptables filter table flow

OUTPUT
CHAIN

FORWARD
CHAIN

incoming
traffic

local
processes

INPUT
CHAIN

outgoing
traffic

Defining the default policy
The default policy should be to reject silently
all packets (‘drop’); only authorized packets will
be accepted.

– iptables -F (flush all the chains)
– iptables -X(delete all the chains)
– iptables -P INPUT DROP
– iptables -P FORWARD DROP
– iptables -P OUTPUT DROP

Manipulating rules
● Adding a rule: iptables -A <options>
● Inserting a rule: iptables -I <options>
● Deleting a rule: iptables -D <options>
● Replacing a rule: iptables -R <options>
● Listing the rules:

iptables -L -n -v --line-number

Rule actions
● A rule should specify a target for a matching

packet:
– ACCEPT: the packet is transferred to the system
– DROP: the packet is discarded
– REJECT: the packet is refused and the sender is

notified
– LOG: the packet is logged and sent to the next rule

● Other options are available, for more advanced
situations.

Creating your first rule
● A rule usually match one of those criteria:

● Check the /etc/services file and the ‘ss’
command output for port numbers.

● Other criteria are available: network
interface, connection status, ...

Source IP Address Source Port Destination IP Address Destination Port

Rule example
● If you want to allow all HTTP

connections to your system coming
from the network 192.168.5.0/24:

iptables -A INPUT -s 192.168.5.0/24 --dport 80 -j ACCEPT

● Incoming connections from other
networks, on the same port will be
managed with the default policy.

nftables
● This is the successor of iptables, using different tools and syntax,

and allowing new types of operations.
● Both iptables and nftables may be available on the same system,

but you want to use only one and ignore the other.
● Some of the main differences are:

– nftables doesn’t provide pre-build tables
– the syntax is different; you can use the iptables-translate command to

convert iptables scripts
– a rule can perform multiple actions (blocking and logging for instance)
– the same rules can be used for both IPv4 and IPv6
– performances have been improved

nftables syntax
One benefit of nftable is that the syntax is more
explicit.

– nft { add | delete | list | flush } table { ipv4 | ipv6 | inet }
table table_name

– nft { add | create | delete | rename | list | flush } chain
table_name chain_name <options>

– nft { add | insert | replace | delete } rule <options>
– nft list ruleset
– nft flush ruleset

Firewall script
● Firewall rules can be set or modified manually,

but it is strongly recommended to apply them with
a script, during the boot process.

● Depending on your distribution, some scripts or
tools may already be provided (firewalld on Red
Hat Enterprise Linux, ufw on Ubuntu for
instance).

● Test your script when you are not relying on
network connectivity!

	Title - Firewalls
	License
	Why using a firewall?
	The Netfilter project
	iptables
	iptables filter table flow
	Defining the default policy
	Manipulating rules
	Rule actions
	Creating your first rule
	Rule example
	nftables
	nftables syntax
	Firewall script

