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Why using a firewall?
● The network where your system is hosted 

may be considered as “hostile”.
● Some applications may not provide an easy 

way to restrict accesses.
● This would provide an additional layer of 

protection.
● You may need to use firewall rules to modify 

the network traffic.



  

The Netfilter project
● Network filtering and related 

applications for the Linux system are 
under the umbrella of the Netfilter 
project.

● The main tools available to manage 
firewalls are iptables and nftables.

● https://netfilter.org/



  

iptables
● iptables is currently the most common filtering tool 

used on Linux systems.
● It relies on various network tables; each table 

contains chains, with a default policy (accept or 
drop).

● Filtering rules can be added or removed in each 
chain.

● ‘Filter’ is the default table, with three chains: input, 
forward and output.



  

iptables filter table flow
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Defining the default policy
The default policy should be to reject silently 
all packets (‘drop’); only authorized packets will 
be accepted.

– iptables -F (flush all the chains)
– iptables -X(delete all the chains)
– iptables -P INPUT DROP
– iptables -P FORWARD DROP
– iptables -P OUTPUT DROP



  

Manipulating rules
● Adding a rule: iptables -A <options>
● Inserting a rule: iptables -I <options>
● Deleting a rule: iptables -D <options>
● Replacing a rule: iptables -R <options>
● Listing the rules:

iptables -L -n -v --line-number



  

Rule actions
● A rule should specify a target for a matching 

packet:
– ACCEPT: the packet is transferred to the system 
– DROP: the packet is discarded
– REJECT: the packet is refused and the sender is 

notified
– LOG: the packet is logged and sent to the next rule

● Other options are available, for more advanced 
situations.



  

Creating your first rule
● A rule usually match one of those criteria:

● Check the /etc/services file and the ‘ss’ 
command output for port numbers.

● Other criteria are available: network 
interface, connection status, ...

Source IP Address Source Port Destination IP Address Destination Port



  

Rule example
● If you want to allow all HTTP 

connections to your system coming 
from the network 192.168.5.0/24:

iptables -A INPUT -s 192.168.5.0/24 --dport 80 -j ACCEPT

● Incoming connections from other 
networks, on the same port will be 
managed with the default policy.



  

nftables
● This is the successor of iptables, using different tools and syntax, 

and allowing new types of operations.
● Both iptables and nftables may be available on the same system, 

but you want to use only one and ignore the other.
● Some of the main differences are:

– nftables doesn’t provide pre-build tables
– the syntax is different; you can use the iptables-translate command to 

convert iptables scripts
– a rule can perform multiple actions (blocking and logging for instance)
– the same rules can be used for both IPv4 and IPv6
– performances have been improved



  

nftables syntax
One benefit of nftable is that the syntax is more 
explicit.

– nft { add | delete | list | flush } table { ipv4 | ipv6 | inet } 
table table_name

– nft { add | create | delete | rename | list | flush } chain 
table_name chain_name <options>

– nft { add | insert | replace | delete } rule <options>
– nft list ruleset
– nft flush ruleset



  

Firewall script
● Firewall rules can be set or modified manually, 

but it is strongly recommended to apply them with 
a script, during the boot process.

● Depending on your distribution, some scripts or 
tools may already be provided (firewalld on Red 
Hat Enterprise Linux, ufw on Ubuntu for 
instance).

● Test your script when you are not relying on 
network connectivity!
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