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Interactive and programmatic editing

Two ways are available to edit text 
files:

– using a text editor in interactive mode
– using various commands to make 

changes based on patterns



  

Text editors
● Plenty of text editors are available on 

Linux, both in text mode or graphical 
mode.

● In text mode, the most popular choices 
are vi/vim, emacs and nano.

● nano is probably the best option to start 
with for beginners.



  

Using nano
● You can launch nano to create a brand new file, or specify 

the file to create or to open.
– nano
– nano <file>

● The most useful commands are listed in the status bar:
– ^O = ctrl + o to save
– ^X = ctrl + x to exit
– M-U = alt + u to cancel an action (undo)
– ^K = ctrl + k to cut a line
– ^U = ctrl + u to paste a line



  

Using vi
● vi (or it’s more modern clone vim) is a more powerful text editor, 

with different modes.
● You can launch vi to create a brand new file, or specify the file to 

create or to open.
– vi
– vi <file>

● The two main modes are “normal” to execute commands, and 
“insert” to edit text directly.

● You can switch to the insert mode with the “i” (insert) or “a” 
(append) commands; you can go back to the normal mode by 
using the escape (esc) key.



  

vim commands
The following commands are to be used in normal mode.

– :w write to a file
– :wq write to a file and quit
– :u undo an action
– yy copy a line
– p paste a line
– dd delete a line
– /<pattern> search for a pattern
– n / N next / previous pattern match



  

EDITOR and VISUAL variables
● Various commands can be used to edit specific files 

(vipw, crontab -e, …) and will start with a default text 
editor.

● You can set the EDITOR and VISUAL variables to define 
your preferences.
– EDITOR=vim
– VISUAL=vim
– export EDITOR VISUAL

● Debian-based Linux distributions also provide the update-
alternatives command to define a default text editor. 



  

The tr command
● tr stands for “translate” and will convert 

a set of characters to another.
● The following command will convert all 

lowercase characters to uppercase from 
one file and save it to another:

● cat <file 1> | tr ‘a-z’ ‘A-Z’ > <file 2>



  

The sort command
This command will perform some 
type of sorting on the target file:

– Normal sorting: sort <file>
– Reverse sorting: sort -r <file>
– Numerical sorting: sort -n <file>
– Version sorting: sort -V <file>



  

The uniq command
● uniq will delete duplicated lines in a 

file:
● uniq <file>
● One useful option is to count (and 

not delete) occurences of each line:
● uniq -c <file>



  

The head and tail commands
● head will display the ten first lines of 

a file, tail the last ten.
● You can specify the number of lines 

to display with the -n option.
● tail -f <file> can be used to see how 

new content gets added in real time.



  

The cut command
● cut will split the content of a file 

based a separator.
● The following example extract only 

the username from the passwd file:
● cut -d “:” -f 1 /etc/passwd



  

The paste command
● paste will combine multiple files into 

one output, values are separated 
by tabs by default.

● paste -d “:” <file1> <file2>



  

The sed command
● sed is a stream editor, it can be used to process 

files line by line.
● Substitute content:

– sed ‘s/<pattern>/<replacement/g’ <file>

● Deleting 10 first lines:
– sed ‘1,10d’ <file>

● The -i option will make changes in-place (into 
the same file).
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