

Linux Administration

Editing files

Xavier Belanger

This work is licensed under
a Creative Commons Attribution-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-sa/4.0/

You are free to:

● Share — copy and redistribute the material in any medium or format

● Adapt — remix, transform, and build upon the material for any purpose, even
commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

● Attribution — You must give appropriate credit, provide a link to the license, and
indicate if changes were made. You may do so in any reasonable manner, but not in
any way that suggests the licensor endorses you or your use.

● ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

● No additional restrictions — You may not apply legal terms or technological
measures that legally restrict others from doing anything the license permits.

Interactive and programmatic editing

Two ways are available to edit text
files:

– using a text editor in interactive mode
– using various commands to make

changes based on patterns

Text editors
● Plenty of text editors are available on

Linux, both in text mode or graphical
mode.

● In text mode, the most popular choices
are vi/vim, emacs and nano.

● nano is probably the best option to start
with for beginners.

Using nano
● You can launch nano to create a brand new file, or specify

the file to create or to open.
– nano
– nano <file>

● The most useful commands are listed in the status bar:
– ^O = ctrl + o to save
– ^X = ctrl + x to exit
– M-U = alt + u to cancel an action (undo)
– ^K = ctrl + k to cut a line
– ^U = ctrl + u to paste a line

Using vi
● vi (or it’s more modern clone vim) is a more powerful text editor,

with different modes.
● You can launch vi to create a brand new file, or specify the file to

create or to open.
– vi
– vi <file>

● The two main modes are “normal” to execute commands, and
“insert” to edit text directly.

● You can switch to the insert mode with the “i” (insert) or “a”
(append) commands; you can go back to the normal mode by
using the escape (esc) key.

vim commands
The following commands are to be used in normal mode.

– :w write to a file
– :wq write to a file and quit
– :u undo an action
– yy copy a line
– p paste a line
– dd delete a line
– /<pattern> search for a pattern
– n / N next / previous pattern match

EDITOR and VISUAL variables
● Various commands can be used to edit specific files

(vipw, crontab -e, …) and will start with a default text
editor.

● You can set the EDITOR and VISUAL variables to define
your preferences.
– EDITOR=vim
– VISUAL=vim
– export EDITOR VISUAL

● Debian-based Linux distributions also provide the update-
alternatives command to define a default text editor.

The tr command
● tr stands for “translate” and will convert

a set of characters to another.
● The following command will convert all

lowercase characters to uppercase from
one file and save it to another:

● cat <file 1> | tr ‘a-z’ ‘A-Z’ > <file 2>

The sort command
This command will perform some
type of sorting on the target file:

– Normal sorting: sort <file>
– Reverse sorting: sort -r <file>
– Numerical sorting: sort -n <file>
– Version sorting: sort -V <file>

The uniq command
● uniq will delete duplicated lines in a

file:
● uniq <file>
● One useful option is to count (and

not delete) occurences of each line:
● uniq -c <file>

The head and tail commands
● head will display the ten first lines of

a file, tail the last ten.
● You can specify the number of lines

to display with the -n option.
● tail -f <file> can be used to see how

new content gets added in real time.

The cut command
● cut will split the content of a file

based a separator.
● The following example extract only

the username from the passwd file:
● cut -d “:” -f 1 /etc/passwd

The paste command
● paste will combine multiple files into

one output, values are separated
by tabs by default.

● paste -d “:” <file1> <file2>

The sed command
● sed is a stream editor, it can be used to process

files line by line.
● Substitute content:

– sed ‘s/<pattern>/<replacement/g’ <file>

● Deleting 10 first lines:
– sed ‘1,10d’ <file>

● The -i option will make changes in-place (into
the same file).

	Title - Editing files
	License
	Interactive and programmatic editing
	Text editors
	Using nano
	Using vi
	vim commands
	EDITOR and VISUAL variables
	The tr command
	The sort command
	The uniq command
	The head and tail commands
	The cut command
	The paste command
	The sed command

